Weighted covering numbers of convex sets
نویسندگان
چکیده
منابع مشابه
Weighted covering numbers of convex sets
In this paper we define the notions of weighted covering number and weighted separation number for convex sets, and compare them to the classical covering and separation numbers. This sheds new light on the equivalence of classical covering and separation. We also provide a formula for computing these numbers via a limit of classical covering numbers in higher dimensions. © 2011 Elsevier Inc. A...
متن کاملCovering numbers of $L_p$-balls of convex sets and functions
We prove bounds for the covering numbers of classes of convex functions and convex sets in Euclidean space. Previous results require the underlying convex functions or sets to be uniformly bounded. We relax this assumption and replace it with weaker integral constraints. The existing results can be recovered as special cases of our results.
متن کاملCovering Numbers in Covering-Based Rough Sets
Rough set theory provides a systematic way for rule extraction, attribute reduction and knowledge classification in information systems. Some measurements are important in rough sets. For example, information entropy, knowledge dependency are useful in attribute reduction algorithms. This paper proposes the concepts of the lower and upper covering numbers to establish measurements in covering-b...
متن کاملOn a Covering Property of Convex Sets
Let [Kx, K2, ■ ■ ■ } be a class of compact convex subsets of euclidean M-space with the property that the set of their diameters is bounded. It is shown that the sets A, can be rearranged by the application of rigid motions so as to cover the total space if and only if the sum of the volumes of all the sets A, is infinite. Also, some statements regarding the densities of such coverings are prov...
متن کاملCovering the Convex Quadrilaterals of Point Sets
For a point set P on the plane, a four element subset S ⊂ P is called a 4-hole of P if the convex hull of S is a quadrilateral and contains no point of P in its interior. Let R be a point set on the plane. We say that a point set B covers all the 4-holes of R if any 4-hole of R contains an element of B in its interior. We show that if |R| ≥ 2|B|+5 then B cannot cover all the 4-holes of R. A sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2011
ISSN: 0001-8708
DOI: 10.1016/j.aim.2011.02.009